B2B Portal for Technical and Commercial Foundry Management

Foundry Corporate News, Topic Sand & Binders, Topic Plant Technology, Equipment

17. March 2016

Fata Aluminum Green sand regeneration plants at Tupy Saltillo

Fata Aluminum Green sand regeneration plants at Tupy Saltillo

Fata Aluminum recently installed a green sand regeneration plant at the Tupy factory in Saltillo, a world leader in cast iron castings.

As is known, the thermal/mechanical regeneration of foundry sand, especially for cast iron foundries which operate with green sand plants, makes it possible to reduce the purchase of new sand. This reduces the transport of sand and/or scraps from and to the foundry.

Aside from these essentially economical/environmentally friendly advantages, regeneration also makes it possible to carefully monitor the sand used by the foundry, and therefore its quality, as the features of regenerated sand are kept constant thanks to the treatment which the sand undergoes in the regeneration plant itself.

The regeneration technology, which consists of a mixed mechanical/thermal/mechanical treatment, was developed by Fata Aluminum in the '80s and led to the implementation in subsequent decades of industrial plants at manufacturers of cast iron such as Cifunsa and Teksid. Plants were built with  productive capacity ranging from 5 t/hr to 25 t/hr.

The Tupy Saltillo regeneration plant has an input capacity of approximately 13 t/hr of product to be treated and produces about 10 t/hr of regenerated sand which is used to manufacture cores.

The plant, which entered the full production stage in May of 2015, processes  excess sand coming from their green sand molding lines.

More in detail, the material to be processed is first crushed to a maximum size of 3 mm and then metal is separated.

The sand is then sent for a first mechanical treatment carried out by a pneumatic attritor, designed and manufactured by Fata Aluminum, in order to remove most of the bentonite in the sand to be processed.

This is followed by thermal treatment. This is a sand regeneration furnace which operates on the principle of the fluid bed, heated by natural gas, with a calcinated sand/air heat recovery device.

The hot sand leaving the calcination furnace drops by gravity into a heat exchanger consisting of two overlapping fluid beds where it meets a backflow of fluidization/combustion air of the furnace.

Specific valves, without moving parts and therefore suitable for high temperature operation, allow the sand to pass from one fluid bed to the one below, forcing the combustion/fluidization air to cross the two thermal exchange fluid beds.

This way the air, before reaching the furnace's calcination chamber, is preheated at a temperature very close to that of the calcinated sand, greatly reducing gas consumption. For example, with a calcination temperature of 700°C, the air is preheated beyond 600°C.

Furthermore the calcinated sand definitely cools down, thus reducing the size of the final fluid bed cooler and the relative demand for cooling water circulating in its tube bundle. Again as an example, with calcination temperature of 700°C, the sand is cooled to a temperature of about 300-350°C.

Operational safety is provided by the two pilot burners installed in the calcination chamber of the furnace, kept constantly lit and equipped with fire detector.

Gas is only introduced in the furnace when the two burners are lit, guaranteed by specific nozzles on the fluidization plate, and proper operation of the intake and fluidization of sand in the furnace have been checked.

The gas and fluidization air are then mixed inside the fluid bed of the calcination chamber and the flame of the pilot burners lights it and controls it over time.

The thermal treatment transforms the active residual bentonite in the sand to be processed into dead and oolitic bentonite, and burns all the coal and resins contained in the sand.

The dead and oolitic bentonite still in the sand after the thermal treatment is then eliminated by applying a mechanical treatment, again carried out in a pneumatic attritor manufactured by Fata Aluminum, with the addition of a final sand dust remover/cooler.

This final conditioning plant also works with the fluid bed principle. It consists of a cooler/dust remover connected to the sand outlet from the attritor and is supplied with a tube bundle with water circulating in it, coming from a specific refrigeration system.

The mechanical treatment practically gets rid of the bentonite and the ensuing dust removal with cooling provides the foundry with a regenerated sand with as little fines as possible and thermally conditioned.

The fines in the sand must be as few as possible as their presence increases the resin demand for forming the cores, therefore increasing the volume of the gases developed upon casting. It also tends to decrease the permeability of the core, increasing issues related to the development of gas at casting.

Therefore it is essential for the quality of the regenerated sand to check that fines remain at low and constant values. This is just as important as the loss at calcination and of residual bentonite.

All the fines, generated by all the stages of the process, are sent to an intake and dust removal system, bags type, which help to keep the dusty emission from the chimney of the dust removal system below the limits established by law.

The plant was designed to work non-stop, even 7 days a week, only stopping for scheduled servicing.

This operating mode helps to have the system switch on and off as little as possible, thus further saving on gas consumption.

Furthermore the furnace, as it is internally lined with a low thermal capacity insulating material, can be brought to temperature, when cold, in less than an hour. This considerably reduces the energy demand required to switch the system on compared to systems lined in high density refractory material. The refractory lining also makes it possible to manage any need of switching the plant on and off without creating problems to the insulation lining. 

The value and quality of the Fata Aluminum regeneration treatment are also proven by the fact that Tupy just ordered a second plant from Fata Aluminum, with the same productivity is that of Saltillo, to install in another cast iron foundry of the Tupy group. 

Youtube Google+ Linkedin Xing